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Abstract 9 

Human cognitive and linguistic generativity depends on the ability to identify 10 
abstract relationships between perceptually dissimilar items. Marcus et al. 11 
(1999) found that human infants can rapidly discover and generalize patterns 12 
of syllable repetition (reduplication) that depend on the abstract property of 13 
identity, but simple recurrent neural networks (SRNs) could not. They 14 
interpreted these results as evidence that purely associative neural network 15 
models provide an inadequate framework for characterizing the fundamental 16 
generativity of human cognition. Here, we present a series of deep long short-17 
term memory (LSTM) models that identify abstract syllable repetition 18 
patterns and words based on training with cochleagrams that represent 19 
auditory stimuli. We demonstrate that models trained to identify individual 20 
syllable trigram “words” and models trained to identify reduplication 21 
patterns discover representations that support classification of abstract 22 
repetition patterns. Simulations examined the effects of training categories 23 
(words vs. patterns) and pretraining to identify syllables, on the development 24 
of hidden node representations that support repetition pattern discrimination. 25 
Representational similarity analyses (RSA) comparing patterns of regional 26 
brain activity based on MRI-constrained MEG/EEG data to patterns of 27 
hidden node activation elicited by the same stimuli showed significant 28 
correlation between brain activity localized in primarily posterior temporal 29 
regions and representations discovered by the models. These results suggest 30 
that associative mechanisms operating over discoverable representations that 31 
capture abstract stimulus properties account for a critical example of human 32 
cognitive generativity. 33 

 34 

1  Introduction  35 

Generativity, the capacity to create and comprehend novel forms, is a defining feature of both 36 
language and human cognition. But what are the fundamental principles that underlie this 37 
generative behavior? Linguistic models for language processing rely on abstract linguistic 38 
variables as a means to explain this phenomenon (Chomsky, 1965). In contrast, associative 39 
models developed first in connectionist literature (Rumelhart & McClelland, 1986) and 40 
subsequently elaborated in the deep learning (LeCun et al., 2015) and later Generative AI 41 
literatures (Kirov & Cotterell, 2018) suggest that generative behavior can emerge through the 42 
discovery of abstract features that mediate productive generalization.  Both accounts propose 43 
fundamentally distinct frameworks for comprehending generativity. They diverge 44 
significantly in their interpretations of findings in linguistic, developmental, and 45 
psycholinguistic research, creating a lack of consensus on the correct paradigm (Seidenberg 46 
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& Plaut, 2014). They also differ in their assertions about the nature of learning (rules or 47 
tokens), the application of this knowledge in online processing, the computations performed 48 
by brain regions (especially the left inferior frontal gyrus or LIFG), and the reliance on 49 
language-specific rules versus domain-general associative mechanisms in language 50 
processing. Both accounts offer reasonable approximations of available behavioral data 51 
because they are inherently underconstrained (Anderson, 1978), lacking decisive empirical 52 
evidence regarding the nature of neural representations and the processes they engage.  53 

Gow et al. (2022) conducted a study to examine whether localized M/EEG data at the ROI 54 
level could be used to distinguish between abstract repetition patterns representing abstract 55 
variables or token-level abstract representations. The underlying hypothesis was that the 56 
abstracted patterns might function as linguistic variables or contribute to the representation of 57 
individual words for analogical generalization. Cluster analyses of decoding accuracy 58 
demonstrated that eight ROIs, all located in posterior temporal cortex, reliably decoded 59 
repeated syllables independently of low-level repetition activation and task demands. Further 60 
analyses indicated that the activation time series supporting decoding in various posterior 61 
MTG subdivisions causally influenced decoding accuracy in other decoder regions of STS and 62 
MTG. Importantly, these decoding processes were linked to regions associated with lexical 63 
and morphological representation (Hickok and Poeppel, 2007). However, Gow et al.’s results 64 
do not differentiate between the two accounts where activity found in the temporal areas could 65 
very well be related to the representation of variables (involved in morphology) or the 66 
representation of words; thus, the localization of decodable and causal neural information does 67 
not resolve the debate. 68 

In this paper, we ask whether the neural abstract representations that support  generativity in 69 
the Gow et al. study align with the representations discovered by a variable -free deep 70 
associative model. We will further investigate whether pretraining and task-specific 71 
performance closely parallel aspects of human neural data to test the role of associative models 72 
in simulating and comprehending cognitive generativity in human learning and representation.  73 
We ask: (i) Do variable-free network models discover the same kinds of representations that 74 
brains discover to produce the generalization of abstract syllable repetition patterns? And (ii) 75 
Is pretraining a necessary precondition for model learning  76 

 77 

2  Generativ ity of  humans and computational  models  78 

The effectiveness of any mechanistic explanation of language acquisition, use, or loss hinges 79 
on its ability to effectively tackle the issue of linguistic generativity. The robust intuitions of 80 
English speakers regarding the grammaticality of innovative, semantically challenging 81 
sentences like "Colorless green ideas sleep furiously" (Chomsky, 1957), the comparative 82 
phonological acceptability of "bnik" versus "bdik" (Chomsky and Halle, 1965), or the past 83 
tense form of the newly coined verb "wug" (Berko, 1958), all support the notion that human 84 
language is generated rather than simply memorized. However, the underlying principles 85 
governing the nature of this generative behavior are not well understood and highly debated. 86 
There are two strikingly different explanations of linguistic generativity. The Rule Account 87 
that developed in the generative linguistics tradition suggests that language users generate or 88 
model novel structures by applying language-specific abstract rules or constraints to abstract 89 
variables that capture natural classes of items (Chomsky, 1965; Jackendoff, 2002; Prince and 90 
Smolensky, 2004). Linguistic variables facilitate generalization by enabling a single 91 
computation or structural constraint to be applied to a potentially boundless range of specific 92 
instances (Jackendoff & Audring, 2020). For instance, the regular English past tense is 93 
generated by combining the variable VERB with the bound morpheme -d. This generative 94 
process does not apply to a specific verb but to the abstract variable  [VERB] which can be 95 
mapped to all the verbs including the novel ones (Berko, 1958). In contrast, associative models 96 
developed first in connectionist literature (Rumelhart & McClelland, 1986) and subsequently 97 
elaborated in the deep learning (LeCun et al., 2015) and later Generative AI literatures (Kirov 98 
& Cotterell, 2018) suggest that there are no language specific-rules, and generativity is product 99 
of associative processes acting on mapping-optimized representations of individual tokens. 100 
Within this framework, the past tense of a novel form like wug is derived from similarity with 101 
alternations such as walk–walked, talk–talked, or balk–balked by characterization of 102 
discoverable/abstracted token features supporting efficient mappings.  103 



Reduplication (the use of patterned phonological repetition to productively mark semantic and 104 
syntactic properties including intensification, plurality, and emphasis) has emerged as core 105 
phenomena for exploring the mechanisms that support linguistic generativity (Marcus et al., 106 
1999; Marcus, 2003; Berent et al., 2002; Berent, 2002; Rabagliati et al., 2019). It is a striking 107 
example of productivity that is widely attested in human languages (Rubino, 2013), more 108 
easily learnable than non-repetition-based forms of linguistic patterning (Berent, 2002), and 109 
most importantly, it is readily generalized to new phonological inputs that have no phonetic 110 
similarity with familiar reduplicated forms (Berent et al., 2004). Marcus et al. (1999) exposed 111 
seven-month-old infants to strings of auditory nonce words formed by repeating syllables that 112 
follow some patterns like ABB (e.g., ga-ti-ti) or AAB (e.g., li-li-na). After exposure to strings 113 
that conformed to one pattern (e.g., AAB) they used a preferential head turn paradigm to 114 
compare looking times to novel stimuli that either conformed to the exposure pattern ( e.g., 115 
wo-wo-fe ) or deviated from it (wo-fe-fe). Infants showed consistently longer looking times to 116 
stimuli that violated the exposure pattern, suggested that they were able to discriminate 117 
between unfamiliar tokens on the basis of reduplication pattern.  They argued that this could 118 
only be explained by rule-based processing because the lack of phonemic overlap between 119 
exposure and test items seemed to rule out similarity-based associative processes that are the 120 
primary theoretical alternative to rule-based explanations for generativity. Following Marcus's 121 
study many studies have examined how humans discover and generalize relationships 122 
involving identity rules using artificial grammar learning paradigms (Gomez, 2002; Pena et 123 
al., 2002; Gerken, 2006; Endress et al., 2007). 124 

To further demonstrate the necessity of rules (operations over variables) , Marcus et al. (1999) 125 
also conducted simulations using a Simple Recurrent Network (SRN) (Elman, 1990) to model 126 
the generalization observed in their experiment. They noted that this variable-free model failed 127 
to replicate the infants' behavior and concluded that this failure reflected the fundamental 128 
inadequacy of variable-free approaches to capture human (variable-dependent) processing. 129 
Subsequent attempts to model Marcus et al.’s (1999) human data using variable-free network 130 
models have met with varying degrees of success. This work has shown that model 131 
performance is influenced by various factors, including pretraining  (whether the model has 132 
any prior knowledge about phonemes, syllables or any abstract relations that will help the 133 
model to figure out the task at hand) (Seidenberg & Elman, 1999a,b; Altmann, 2002), encoding 134 
assumptions (whether the model is trained on input vectors that represent phonetic features, 135 
place of articulation, vowel height, primary/secondary stress or non-featural random vectors) 136 
(Negishi, 1999; Christiansen & Curtin, 1999; Christiansen, Conway, & Curtin, 2000; Dienes, 137 
Altmann, & Gao, 1999; Altmann & Dienes, 1999; Shultz & Bale, 2001; Geiger et al., 2022), 138 
and model type (whether the model is a neural network,  autoencoder trained with cascade-139 
correlation, auto-associater, Bayesian, Echo State Network or Seq2Seq) (Shultz, 1999; Sirois, 140 
Buckingham, & Shultz, 2000; Frank and Tenenbaum, 2011; Alhama and Zuidema, 2018; 141 
Prickett et al., 2022), and task (whether the task is to predict the new rule, word, syllable, 142 
pattern or categorization, identification, segmentation) (Seidenberg & Elman, 1999a, 1999b; 143 
Christiansen & Curtin, 1999;) (see Alhama and Zuidema (2019) for a detailed review of the 144 
computational models). These factors have made it challenging to draw direct comparisons 145 
with human behavior, further fueling the ongoing discussion.  146 

Among these factors, the role of  pretraining on recurrent model acquisition of repetition-147 
based rules deserves more discussion. Seidenberg and Elman (1999a,b) proposed that infants 148 
might have acquired the capacity to discern phonological similarity between syllables through 149 
prior exposure, and they address this by extensively pre-training an SRN with syllables, 150 
enabling the SRN to recognize identity relationship between syllables. In Altmann's (2002) 151 
study, prior knowledge integration involved pre-training a model with 10,000 sentences from 152 
Elman (1990), wherein the model predicts the subsequent word using localist vectors, without 153 
considering syllables or phonemes. Integrating relevant prior knowledge into the initial state 154 
of the models might facilitate the learning process in converging towards the generalization 155 
that infants appear to acquire more readily. This is a valid assumption because Marcus et al.’s 156 
seven-month-old infants were not tabula rasa. Interpolating from the findings of Hart and 157 
Risley (2003), it appears that children from families on welfare are exposed to approximately 158 
1.9 million words, children from working-class families hear about 3.8 million words, and 159 
children from professional families are exposed to approximately 6.8 million words by the age 160 
of 7 months. It is worth noting that deep learning models, driven by the principle of 161 



hierarchical feature representation, extract and organize increasingly abstract data features, 162 
similar to human cognition. This approach enhances computational efficiency and forms the 163 
foundation for pretraining, a technique where models are initially trained on a related task to 164 
learn useful features before fine-tuning the target task. However, for the validity of prior 165 
knowledge argument, it is essential to identify the precise components of prior knowledge that 166 
impact the ability to generalize to novel items. For instance, Seidenberg and Elman (1999a) 167 
incorporated pretraining into their SRN, mapping sequences of syllables to an indicator 168 
denoting whether each syllable matched its predecessor. Marcus (1999) contended that this 169 
form of pretraining lacks naturalness, and Shultz and Bale (2001) emphasized that a model 170 
cannot be trained on identity relations, as it would be an unfair advantage.  171 

It is unclear whether the limitations of existing models demonstrate the fundamental need for 172 
variables to explain this type of generativity (and by extension human performance), or 173 
whether they simply reflect the limitations of current implementations of variable -free 174 
associative models. LeCun, Bengio & Hinton (2015) demonstrated that deep learning network 175 
architectures can discover abstract features that support dramatic generativity through 176 
variable-free associative processes. While useful as a proof of concept for the potential 177 
computational adequacy of associative mechanisms to explain human generativity, questions 178 
remain about how realistic they are as neural models and as psychological models given the 179 
vast training sets, they require to achieve human-like performance. Work relating modeling to 180 
neural data has the potential to show how these computational constraints shape human neural 181 
processing. Furthermore, in the ever-evolving landscape of cognitive research, an intriguing 182 
avenue of inquiry has emerged through neural studies, delving into the intricate neural 183 
underpinnings that underlie the recognition and processing of abstract repetition patterns, 184 
adding another layer of depth to our understanding of human generativity and cognitive 185 
processes (Yang et al., 2019; Kanwisher et al., 2023). 186 

Gow et al. (2022) provides the most direct examination of the interplay between generativity 187 
and neural mechanisms. This study tried to localize M/EEG data at the ROI level to distinguish 188 
between abstract variables vs. token-level features. A support vector machine (SVM) classifier 189 
technique that had been previously applied to MEG data was adapted to probe individual ROIs 190 
identified by Granger Causation Analysis (GCA). The analysis aimed to establish whether 191 
patterns of neural activity that could be decoded had a causal influence on downstream 192 
processes—a crucial but often overlooked criterion for determining functional roles in 193 
processing and representation (Dennett, 1987; Kriegeskorte and Diedrichsen, 2019). Data 194 
were collected during an artificial grammar learning experiment in which participants briefly 195 
encountered CV-CV-CV nonwords following a reduplication pattern (AAB, ABB, or ABA) 196 
and judged whether phonemically orthogonal nonwords followed the same rule or pattern.  197 
Behavioral results showed that participants performed the task with high accuracy. Neural 198 
analyses revealed a broadly distributed bilateral network encompassing 67 ROIs with distinct 199 
activation patterns during the task, SVMs were trained to distinguish between items based on 200 
their reduplication pattern and were subsequently tested on their ability to classify the 201 
reduplication patterns in untrained items created using different syllable sets . Cluster analyses 202 
evaluating decoding accuracy revealed that eight ROIs (see Fig. 1), situated exclusively in the 203 
posterior temporal cortex, consistently decoded repeated syllables, irrespective of low -level 204 
repetition activation and task requirements. Subsequent analyses indicated a causal 205 
relationship, demonstrating that the activation time series supporting decoding in various 206 
subdivisions influenced decoding accuracy in other regions. However, Gow et al.'s findings 207 
fail to distinguish between the two accounts, leaving open the possibility that the observed 208 
activity in the temporal areas may be connected to the representation of variables (involved in 209 
morphology) or the representation of words. Consequently, the localization of latent 210 
information does not bring resolution to the ongoing debate.  211 

 212 



 213 

Figure 1: Regions of interests (ROIs), used in Gow et al. (2022), visualized over an inflated averaged 214 
cortical surface. Lateral view of the left and right hemisphere is shown. Highlighted ROIs (L_STG-1, 215 
R_STS-1 (most posterior superior), R_STG-2,3 (posterior to anterior), and R_MTG-1,2,3,4 (posterior 216 
to anterior)) showed reliable activation differences, successful decoding, or both, for reduplication.  217 

The goal of the current study is to determine whether the abstract neural representations 218 
discovered by Gow et al. (2022) are consistent with the abstract token representations 219 
discovered by variable-free associative models. We do this by presenting a variable-free deep 220 
LSTM model trained on cochleagrams of the stimuli used by Gow et al. to discriminate stimuli 221 
based on reduplication pattern and comparing patterns of stimulus similarity within the model 222 
to patterns of ROI-level evoked activation similarity by the same stimuli in Gow et al. using 223 
Representational Similarity Analysis (RSA) (Kriesgerkorte et al., 2008; Diedrichsen and 224 
Kriegeskorte, 2017). Additionally, we explore the effects of pretraining and task-specific 225 
mapping on performance on model performance and the relationship between features 226 
discovered by the models and human neural data. To do this we trained a deep LSTM model 227 
with dropout (as explored in Geiger et al., 2022 and Prickett et al., 2022) using two distinct 228 
encoding assumptions. The first assumption involved a pattern learner trained on random 229 
vectors representing three patterns (Geiger et al., 2022). We then employed a word learner 230 
trained on vectors representing individual words based on syllable position. Consequently, we 231 
explored whether any of these variable-free network models reveal comparable representations 232 
to those identified in the brain, leading to the generalization of abstract syllable repetition 233 
patterns. 234 

 235 

3  Computational  Model ing Methods  236 

Within this section, we present a detailed account of the methodological framework employed 237 
in our research, encompassing various aspects such as training data, network architecture, 238 
testing procedures, decoding techniques, representational similarity analysis, considerations 239 
of replicability, and the hardware and software infrastructure utilized for our study.  240 

 241 

3 .1  Tra in ing  da ta  242 

We used the same audio files as in Gow et al. (2022). There was a total of 23 syllables, and 243 
we used sixteen in training (/ba/, /tʃɪ/, /dɪ/, /dʒɪ/, ka/, /nɪ/, /pɪ/, /rɪ/, /ʃa/, /sɪ/, /ta/, /ðɪ/, / θu/, /va/, 244 
/zɪ/, /ʒu/) and seven in test (/fu/, /ga/,  /hɪ/, /la/, /mɪ/, /wa/ and /ji/). Training data included 720 245 
(240 for each pattern) phonemically balanced trisyllabic CV.CV.CV nonwords which were 246 
created by concatenation of sixteen different syllables following the syllable reduplication 247 
patterns: ABA (e.g., as in ba-chih-ba), AAB (e.g., as in ba-ba-chih) and ABB (e.g., as in ba-248 
chih-chih). Testing data included 126 (42 for each pattern) phonemically balanced trisyllabic 249 
nonwords which were created in the same way. It was reported that the auditory stimuli were 250 
recorded at a sampling rate of 44.1 kHz with 16-bit sound quality and the duration of syllables 251 
was equalized to 250 ms (750 ms for each CVCVCV nonword). The input to the network was 252 
jittered cochleagrams of each auditory file. A cochleagram is a spectrotemporal representation 253 
of auditory signal designed to mimic cochlear frequency decomposition. Cochleagram was 254 
preferred over spectrogram since it provides a more physiologically realistic input format for 255 



the model. To create a cochleagram, we first removed any surrounding silence from the audio 256 
files, and then passed each sound clip through a bank of 203 bandpass filters that were zero -257 
phase, with varying center frequencies. Low-pass and high-pass filters were included to 258 
perfectly tile the spectrum, resulting in a total of 211 filters. The final cochleagram 259 
representation was 150 x 211 (time x frequency) (Kell et al., 2018; Feather et al., 2019). We 260 
generated the cochleagrams using Python with the numpy, scipy, and librosa libraries 261 
(Oliphant, 2007; McFee et al., 2015; Harris et al., 2020). We then created ten jittered 262 
cochleagrams for each original cochleagram by utilizing data augmentation (specifically 263 
jittering in the time domain using random sigma values between (0.03, 0.09) (Um et al., 2017). 264 
A schematic representation of the audio-to-cochleagram conversion as well as sample jittered 265 
cochleagram can be found in Fig. 2A. 266 

 267 

 268 

Figure 2: Model input and architecture. (A) Sample audio conversion to cochleagram and its jittered 269 
version.  The x-axis represents the time (750 ms) and time samples (150), and the y-axis represents the 270 
amplitude (dB) and frequency (211Hz). (B) The model architecture. The model was a standard recurrent 271 
LSTM network with seven fully recurrent layers. The output layer of the model was a dense layer with 272 
the sigmoid function, either with 69 (word) or 100 (pattern) output vectors and 23 vectors for the pretrain 273 
network. 274 

 275 

3 .2  Tra in ing  ta sks  a nd  pre tra in ing  276 

Two separate LSTM models were created and trained independently on the same training data 277 
(7,200 tokens for 720 words). A “word learner” network was trained to differentiate between 278 
words, and a “pattern learner” network was trained to distinguish patterns. We chose the word 279 
identification task to draw attention to whole word properties with explicitly requiring 280 
sublexical segmentation into syllables. To do this, we created target vectors using a variation 281 
of slot-based system in which there are twenty-three slots for each syllable, a total of 69 nodes 282 
(23X3). For each word, we generated a sparse target vector with 3 of 69 selected elements set 283 
to 1 (all other elements 0), representing which of the three syllables filled the twenty-three 284 
possible slots. With this task, the word learner network would use whole-word syllabic 285 
properties for efficient sound to word mapping. The pattern learner network was trained to 286 
differentiate between patterns using random vectors representing the three patterns. For each 287 
of the three patterns, we generated 100-dimensional random input vectors that implicitly 288 
represented property values across dimensions. In addition, since we also checked the 289 
influence of pretraining on network performance, we trained a network on cochleagrams 290 
representing syllables using one-hot-vectors for each of the twenty-three syllables. We used 291 



cochleagrams of each syllable in the shape of 50 x 211 (time x frequency).  292 

 293 

3 .3  Netwo rk  a rch i t ec ture  a nd  t e s t ing  294 

To model variable representation in the brain, we employed LSTMs due to the temporal 295 
structure of auditory speech data. LSTMs are a type of recurrent neural network that are 296 
capable of retaining past inputs and outputs for an extended period, making them well -suited 297 
for processing sequential data, such as time series and natural language. Based on the work of 298 
Avcu et al. (2023) and Magnuson et al. (2020), we posit that LSTMs are a superior choice for 299 
capturing long-term dependencies in auditory speech data. The pretraining model consisted of 300 
a single LSTM layer with 512 nodes and a dense layer with 23 nodes and softmax activation 301 
function. We used the categorical cross-entropy as the loss function and the ADAM (Adaptive 302 
Moment Estimation) (Kingma and Ba, 2014) optimization with a fixed learning rate of 303 
0.00001. The model was trained for 5000 epochs and the model training and validation 304 
accuracy were very high (over 90%) which demonstrates that the pretrained model learned to 305 
identify each of the 23 syllables accurately. 306 

The word and pattern learner models without pretraining consisted of seven layers with 128, 307 
256, 512, 1024, 512, 256 and 128 LSTM nodes respectively. On top of the LSTM layers, a 308 
dense layer with vector outputs (69 for the word and 100 for the pattern learner networks). 309 
After every LSTM layer, we used a dropout layer with 0.85 (following Prickett et al. (2022)). 310 
Dropout is a regularization method that helps generalization by forcing the model to make 311 
predictions that do not overly depend on any single feature, thus encouraging robustness and 312 
preventing overfitting. See Fig. 2B for the structure of the main networks. The word and 313 
pattern learner models with pretraining consisted of the same architecture except for an 314 
additional input LSTM layer with 512 nodes with preloaded weights coming from the 315 
pretraining. The cochleagrams of size 150 x 211 were fed into the first LSTM layer. 316 
Subsequently, the output of this layer was passed onto other layers respectively. The final layer 317 
was a dense layer that transformed the input vector X to an output vector Y of length n, where 318 
n represents the number of target classes (69 or 100). We employed the sigmoid activation 319 
function for the output layer, which returns a value between 0 and 1 and is centered around 320 
0.5. Mean squared error loss was employed to calculate the mean of squares of errors between 321 
labels and predictions, with a batch size of 100. For optimization during training, we utilized 322 
ADAM as we explained above. Each of the 720 words had ten jittered tokens, and seven of 323 
these tokens were utilized for training, while three were used for validation. For the 324 
pretraining, each syllable had two hundred tokens of which 180 were used for training and 20 325 
were used for validation. Furthermore, the word and pattern learner networks were trained for 326 
10,000 epochs, which involved complete iterations over the training set. The training 327 
parameters, such as the learning rate, the optimization algorithm, the loss function, etc., were 328 
adopted from Avcu et al. (2023). 329 

We calculated accuracy of the word and pattern learner networks with and without pretraining 330 
by checkpointing every 100 epochs during the training. To evaluate the distance between the 331 
predicted target vector and the true target vector, we used cosine similarity instead of a binary 332 
cross-entropy threshold value as it is more conservative and psychologically relevant 333 
(Magnuson et al., 2020; Geiger et al., 2022). We reported the average cosine similarity for all 334 
words at every 100 epochs and for both training, validation and test data. Cosine similarity 335 
between target observed patterns was calculated for trained tokens (training accuracy), 336 
reserved alternate tokens of trained syllable patterns (validation accuracy) and tokens based 337 
on syllables that were not used during training (test accuracy). 338 

 339 

3 .4  Deco ding  340 

We decoded the original 720 words’ activations from the best performing model iteration to 341 
check whether representations for each word would be useful for SVM to distinguish pairwise 342 
comparisons of the mean activation time courses in the three experimental conditions: ABA 343 
vs. AAB, ABA vs. ABB, and AAB vs. ABB. While the pattern learner was trained to 344 
distinguish these three patterns from each other, the word learner was trained to identify every 345 
single word. Thus, the decoding analysis will show whether the word learner grasped any 346 
useful feature to differentiate patterns while focusing on word specific features. The hidden 347 



layer activations were extracted from each LSTM layer of the models at the final time sample 348 
(150) yielding a 720 X N vectors where N is the number of hidden units in a specific LSTM 349 
layer. We then divided the data frames into three sub data frames where each sub data frame 350 
contain pairwise comparisons, e.g., ABA vs. AAB (e.g., 480XN). Next, we standardized 351 
activations by removing the mean and scaling to unit variance using sklearn StandardScaler 352 
function. We then trained and tested SVMs using cross-validation (k=10) on each sub data 353 
frame. For the SVM hyperparameters, we used the sklearn GridSearchCV function which 354 
accepts a dictionary of different hyper-parameters. This process yielded kernel parameter to 355 
be poly, gamma parameter to be 1, C parameter to be 1e-05, and tol parameter to be 1e-5. We 356 
reported mean decoding accuracy with standard deviation for each layer of both word and 357 
pattern learner networks with and without pretraining. 358 

 359 

3 .5  Represe nta t io na l  s imi l a r i ty  a na ly s i s  360 

Representational similarity analysis (RSA) involves assessing the correlation between 361 
decoding accuracy, determined by SVMs applied to ROI activation vectors in the brain 362 
(comprising 8 MNE measures per ROI per timepoint), and SVMs applied to activation vectors 363 
derived from each of the 7 model layers. The neural decoding accuracy data was sourced from 364 
Gow et al. (2022), where the study utilized linear SVMs to classify MNE activation timeseries 365 
within 68 distinct ROIs. It was reported that the ROIs were subdivided into eight parts, and 366 
MNE source estimates were averaged for each subdivision, accounting for trial orientation. 367 
This resulted in eight timeseries per ROI per trial, spanning from 200  ms before stimulus onset 368 
to 1000 ms after onset. Vector normalization was applied to minimize overall activation 369 
differences, and trials were down sampled to 100 Hz and bundled into sets of 10 within each 370 
condition, which were then averaged to improve signal-to-noise ratio. This process was 371 
repeated 100 times to reduce potential sampling bias. SVM classifiers were trained for each 372 
ROI and condition pair, and accuracy was assessed using a leave-one-trial-out technique. The 373 
overall accuracy on untrained trials was determined by averaging classifier performance 374 
across subjects at each timepoint yielding 1X1200 (Accuracy x Time) vectors for each of the 375 
three comparisons for each ROI. We performed preprocessing on the neural decoding accuracy 376 
vectors by narrowing our focus to the window between 100 ms and 850 ms after the word 377 
onset. This window accounts for the 100 ms delay associated with the lag between the neural 378 
signal and word onset, making the total duration still 750 ms for words. We then averaged 379 
every ten-time samples which yielded a vector of 1X75. 380 

Model decoding accuracy data reflects the hidden layer activations associated with the 720 381 
words from the best performing model iteration. For each of the model and each of the layer, 382 
we saved hidden unit activations with size, for example, 720 X 150 X 256 where second 383 
dimension is time samples, and third dimension is the number of hidden units. We then 384 
followed the above SVM decoding steps and calculated SVM decoding accuracy by every time 385 
samples for each pairwise comparison. This process yielded three vectors of size 1 X 150 (one 386 
for each pairwise comparison) for each layer of the model. We then averaged every two-time 387 
samples which yielded a vector of 1X75. SVM accuracy functions as a measure of 388 
dissimilarity, with high accuracy in two pairwise comparisons signifying high level of 389 
dissimilarity between the compared items. To assess the similarity between the decoding 390 
accuracy vector of the model and that of the brain, Spearman's rank correlation coefficient 391 
(rho), a nonparametric rank correlation measure, was used. To enhance the reliability of our 392 
results, we employed the Monte Carlo permutation test. This simulation technique helps us 393 
evaluate the likelihood of obtaining the observed correlation by chance, considering the 394 
variability in our data. It offers a valuable means of verifying result robustness and gaining 395 
insight into the uncertainty associated with the correlation coefficient. The p-values associated 396 
with each correlation coefficient are based on 10,000 permutations (see Fig. 3 for a schematic 397 
representation of SVM and RSA steps).  398 

Upon completing this procedure, we generate a matrix of dimensions 68x21 for each model, 399 
which contains correlation coefficients for every pairwise comparison across each layer (3x7). 400 
For visualization purposes, we aggregate decoding accuracy across pairwise comparisons by 401 
calculating the average of the rho values, transforming the 68x21 matrix into a 68x7 format . 402 
Since p-values cannot be averaged, we adopt a criterion where we classify a layer as "non -403 
significant" if any p-value for a pairwise comparison within that layer exceeds 0.05. For 404 



instance, in layer 1, if the p-values are as follows: 1vs2=0.001, 1vs3=0.06, 1vs2=0.0001, we 405 
consider layer 1 as non-significant due to the second comparison (1vs3) having a p-value of 406 
0.06. Subsequently, we reconstruct a p-value table, designating insignificant layers with 0.1 407 
and significant ones with 0.01. This new p-table was used for masking the insignificant 408 
correlations in the RSA plots. Finally, to compare the mean correlation values of decoding vs. 409 
non-decoding ROIs across the seven layers of each model, we used Welch's t-test (the unequal 410 
variances t-test). 411 

 412 

 413 

Figure 3: Schematic representation of SVM and RSA steps. Hidden layer activity from each layer of a 414 
specific model and ROI level neural activity from all of the 68 ROIs were fed into the SVM which 415 
outputs a decoding accuracy by time matrix for each of the pairwise comparisons. These 1X75 vectors 416 
were then correlated between the model and brain to get correlation coefficients and its associated p 417 
values. Final correlation matrix between the models and brain is created by averaging the Spearman’s 418 
rhos across the three pairwise comparisons. 419 
 420 

3 .6  Repl ica b i l i t y,  ha rdwa re ,  a nd  so f twa re  421 

To confirm replicability, we repeated the entire training process for all models (including 422 
pretrained model) on many separate occasions, yielding only negligible variations across 423 
iterations. Our simulations were executed on a Linux workstation equipped with an Intel(R) 424 
Xeon(R) Gold 5218 CPU operating at 2.30 GHz, supported by 98 GB of RAM, and powered 425 
by an NVIDIA Quadro RTX 8000 graphics card with 48 GB of memory. We conducted these 426 
simulations using Python 3.6, TensorFlow 2.2.0, and Keras 2.4.3. Each model required 427 
approximately 72 hours to train on this workstation, with the exception of the pretrain network, 428 
which took 6 hours. For your convenience, our up-to-date container, along with comprehensive 429 
explanations and Jupyter notebooks for running our training code and analyses, can be 430 
accessed through our GitHub repository at https://github.com/xxxx/yyyyy. 431 

 432 

4  Results  433 

In this section, we present the outcomes of each model's performance with and without 434 
pretraining, along with the results of SVM pattern decoding and similarity analyses in 435 
comparison to brain data. 436 

 437 

4 .1  Pretra in ing  438 

Our premise was that seven-month-old infants are already acquainted with their language's 439 
syllables. To assess the impact of prior knowledge on the generalization abilities of the 440 



networks, we conducted pretraining on a basic network using the twenty-three syllables 441 
employed in pattern/word learning. The outcomes of this pretraining revealed that a simple 442 
LSTM model successfully recognized all twenty-three syllables, achieving a training accuracy 443 
of 99% and a validation accuracy of 93%. This underscores that the pretrained weights, which 444 
would be subsequently utilized for word or pattern learning, incorporate representations of 445 
these syllables. 446 

 447 

4 .2  Mo del  a ccura c ie s  448 

In our experimental setup, both a word learner, exposed to a corpus of 720 distinct words, and 449 
a pattern learner, designed to acquire three specific patterns, underwent training in two 450 
scenarios: one with pretrained weights and the other without. The results, as illustrated in Fig . 451 
4, reveal significant disparities in their learning trajectories. In the absence of pretrained 452 
weights, both learners encountered challenges in achieving satisfactory performance levels 453 
over the 10,000 epochs. The pattern learner consistently maintained an average cosine 454 
similarity of around 0.34 throughout the entire training duration, encompassing training, 455 
validation, and test datasets. The word learner also remained relatively consistent, exhibiting 456 
a mean average cosine similarity of approximately 0.22 for training and validation accuracy 457 
(please note that test accuracy was not assessed for the word learner, given the uniqueness of 458 
each word). The pattern learner's performance remained close to chance, while the word 459 
learner's performance, although better than chance, remained suboptimal for a successful 460 
model. In stark contrast, when pretrained weights were utilized, both learners reached high-461 
performance levels by the conclusion of the 10,000 epochs. The pattern learner, in particular, 462 
demonstrated an average cosine similarity of 0.71 for training, 0.59 for validation, and 0.56 463 
for the test dataset. Notably, the assessment of test data accuracy is pivotal, as it reflects the 464 
model's performance on novel data. The word learner also excelled, achieving average cosine 465 
similarities of 0.72 for training and 0.67 for validation data. These outcomes underscore the 466 
considerable impact of pretrained weights on the learning capabilities of our models.  467 

 468 

 469 

Figure 4: Model performance during the training of four models (word and pattern learners with and 470 
without pretraining). The top row shows the performance of models without pretraining, while the 471 
bottom row shows models with pretraining. Training performance over epochs is represented with solid 472 
lines (training accuracy in blue, validation accuracy in orange, and test accuracy in green, applicable to 473 
pattern learners only). Dashed horizontal lines indicate chance performance (33% for patterns and 474 
0.0014% for words). The average cosine similarity between the predicted vectors and true vectors was 475 



computed for each model at every 100th epoch within the 0 to 10,000 epoch range.  476 

 477 

4 .3  SVM deco d ing  a ccura cy  478 

In the next phase of our experimental analysis, we employed Support Vector Machines (SVMs) 479 
to decode the hidden unit activations of both the word learner and pattern learner networks 480 
trained with and without pretrained weights. Table 1 presents the SVM mean decoding 481 
accuracy with standard deviations for each layer, focusing on the discrimination between the 482 
AAB, ABB, and ABA patterns. The results shed light on the impact of pretraining and the 483 
specific learning objectives of each model. When considering models without pretraining, we 484 
observed that both the pattern learner and word learner struggled to achieve decoding accuracy 485 
above chance levels for the AAB vs ABB comparison. This result may be attributed to the 486 
inherent repetition in both patterns. For the ABA vs AAB and ABA vs. ABB comparisons, the 487 
word learner displayed a marginally better performance than the pattern learner, although both 488 
remained above chance. When considering models without pretraining, we observed that 489 
decoding accuracy varied across the layers. In particular, the pattern learner displayed 490 
increased decoding accuracy from layer 1 to layer 3, with notable improvements between 491 
layers 1 and 2. However, the performance decreased slightly in layer 4 and remained relatively 492 
consistent from layer 4 to layer 7. The word learner, on the other hand, exhibited a similar 493 
trend, with improved accuracy from layer 1 to layer 2, followed by a decrease in performance 494 
in layer 4 and consistent accuracy from layer 4 to layer 7.  495 

In contrast, models with pretrained weights exhibited noteworthy differences. The pattern 496 
learner surpassed the word learner in the ABA vs AAB and ABA vs. ABB comparisons, 497 
displaying high decoding accuracy. In the AAB vs ABB comparison, both models achieved 498 
accuracy levels significantly above chance. Notably, the word learner demonstrated superior 499 
performance in this specific comparison compared to the pattern learner.  As for the progression 500 
of decoding accuracy between layers, the both the pattern and word learners experienced 501 
consistent and high decoding accuracy across all layers, with the highest performance achieved 502 
in layer 4. These findings highlight the distinct learning dynamics of the word learner, which 503 
was primarily trained to identify individual words, and the pattern learner, designed to 504 
discriminate among the three distinct patterns. Pretraining significantly boosted the decoding 505 
accuracy of both models, underscoring the beneficial role of pretrained weights in enhancing 506 
learning capabilities. The results emphasize the importance of considering the specific 507 
objectives of neural network models and the impact of pretraining on their performance.  508 

 509 

Table 1: SVM mean decoding accuracy with standard deviation in parentheses for each layer 510 
of both word and pattern learner networks with and without pretraining.  Red color reflects 511 
decoding accuracy below the chance level of 50%. 512 

 513 

Models Pattern Learner w/o Pretraining Word Learner w/o Pretraining 

Layers ABA-AAB ABA- ABB AAB- ABB ABA-AAB ABA-ABB AAB- ABB 

Layer 1:128 0.64 (0.04) 0.64 (0.07) 0.35 (0.05) 0.79 (0.07) 0.79 (0.04) 0.20 (0.03) 

Layer 2:256 0.68 (0.04) 0.69 (0.09) 0.38 (0.04) 0.73 (0.07) 0.73 (0.06) 0.24 (0.03) 

Layer 3:512 0.65 (0.07) 0.65 (0.09) 0.37 (0.10) 0.77 (0.07) 0.78 (0.06) 0.19 (0.05) 

Layer 4:1024 0.56 (0.09) 0.56 (0.09) 0.45 (0.07) 0.62 (0.10) 0.62 (0.07) 0.46 (0.09) 

Layer 5:512 0.56 (0.08) 0.56 (0.08) 0.44 (0.06) 0.59 (0.10) 0.57 (0.11) 0.42 (0.07) 

Layer 6:256 0.51 (0.04) 0.49 (0.06) 0.40 (0.03) 0.62 (0.07) 0.88 (0.05) 0.40 (0.04) 

Layer 7:128 0.51 (0.03) 0.51 (0.03) 0.42 (0.03) 0.63 (0.05) 0.62 (0.06) 0.38 (0.05) 

Mean 0.587143 0.585714 0.401429 0.678571 0.712857 0.327143 

Models Pattern Learner w Pretraining Word Learner w Pretraining 



Layers ABA-AAB ABA- ABB AAB- ABB ABA-AAB ABA-ABB AAB- ABB 

Layer 1:128 0.88 (0.05) 0.88 (0.06) 0.56 (0.06) 0.79 (0.04) 0.75 (0.08) 0.71 (0.08) 

Layer 2:256 0.88 (0.03) 0.87 (0.04) 0.55 (0.06) 0.83 (0.05) 0.76 (0.05) 0.72 (0.07) 

Layer 3:512 0.90 (0.04) 0.88 (0.04) 0.52 (0.06) 0.90 (0.03) 0.82 (0.10) 0.68 (0.08) 

Layer 4:1024 0.97 (0.02) 0.95 (0.02) 0.92 (0.03) 0.95 (0.03) 0.95 (0.03) 0.93 (0.05) 

Layer 5:512 0.95 (0.03) 0.91 (0.04) 0.93 (0.04) 0.86 (0.04) 0.92 (0.03) 0.82 (0.04) 

Layer 6:256 0.95 (0.03) 0.92 (0.04) 0.94 (0.04) 0.81 (0.04) 0.88 (0.05) 0.88 (0.03) 

Layer 7:128 0.96 (0.04) 0.92 (0.04) 0.94 (0.02) 0.82 (0.05) 0.86 (0.04) 0.84 (0.03) 

Mean 0.927143 0.904286 0.765714 0.851429 0.848571 0.797143 

 514 

4 .4  Represe nta t io na l  s imi l a r i ty  a na ly s i s  515 

In addition to the decoding analysis described earlier, we conducted a comprehensive 516 
comparison of the decoding accuracy by time vectors extracted from the hidden unit 517 
activations of each layer within our models with neural activity derived from the 68 distinct 518 
ROIs. Our primary objective was to elucidate the close correspondence between human neural 519 
data and model performance in relation to pretraining and task-specific capabilities. The 520 
findings, depicted in Figs. 5 and 6, demonstrated that both the pattern and word learner models 521 
without pretraining exhibited moderate positive correlations with the neural data, particularly 522 
in the third layer of both model architectures. Notably, the regions of interest (ROIs) 523 
displaying these correlations included L-MTG_5, R-ITG_2, and R-STG_4 for the pattern 524 
learner (Fig. 5 left panel), and L-ITG_1, L-MTG_5, L-postCG_1, L-STG_1, R-ITG_2 and 3, 525 
R-MTG_2, R-STG_1, R-STG_4, and R-STS_1 for the word learner (Fig. 5 right panel). While 526 
none of the ROIs demonstrating moderate correlations with the pattern learner were decoder 527 
ROIs reported in Gow et al. (2022), it's noteworthy that three of the ROIs showing moderate 528 
correlation with the word learner functioned as decoders, suggested to store reduplication 529 
patterns. In the case of models with pretraining, the outcomes reveal remarkably distinct 530 
patterns of correlations. Notably, the majority of decoder ROIs (with the exception of R-531 
STG_3) and several others, demonstrated notably high correlations with the pattern learner, 532 
particularly in the later layers, while the first layer did not show any significant correlation. 533 
Conversely, for the word learner, we observed a contrasting trend, wherein all decoder ROIs 534 
and numerous additional regions exhibited substantial correlations primarily with the initial 535 
layers, while the final layer displayed comparatively weaker correlations. In addition, mean 536 
correlations between the seven layers of each model and decoder ROIs vs non-decoder ROIs 537 
(Fig. 7) showed that in all four models across all seven layers, decoder ROIs showed higher 538 
correlation than non-decoder ROIs and these correlations are significantly different from each 539 
other according to the Welch's t-test. 540 

 541 



 542 

Figure 5: Heatmaps illustrating the correlation between SVM-based decoding accuracy applied to ROI 543 
activation vectors in the brain and SVMs applied to activation vectors across the 7 layers in the pattern 544 
and word learner models without pretraining. Each cell within the heatmap represents the correlation 545 
(Spearman’s rho) between the decoding accuracy time vector of an ROI and that of a layer in the model. 546 
Insignificant correlations are masked by blue shading. Decoder ROIs from Gow et al. (2022) are marked 547 
with red color. 548 

 549 

 550 



 551 

Figure 6: Heatmaps illustrating the correlation between SVM-based decoding accuracy applied to ROI 552 
activation vectors in the brain and SVMs applied to activation vectors across the 7 layers in the pattern 553 
and word learner models with pretraining. Each cell within the heatmap represents the correlation 554 
(Spearman’s rho) between the decoding accuracy time vector of an ROI and that of a layer in the model. 555 
Insignificant correlations are masked by blue shading. Decoder ROIs from Gow et al. (2022) are marked 556 
with red color. 557 



 558 

Figure 7: Mean correlations between the seven layers of each model and decoder ROIs vs non-decoder 559 
ROIs. Top row shows the models without pretraining, and bottom row shows the models with 560 
pretraining. Mean correlations (Spearman’s rho) for decoder ROIs are shown with blue color and non-561 
decoder ROIs with red color. Error bars represent the Welch's t-test p-values, which indicate the 562 
statistical significance of the mean differences of correlation between decoder and non-decoder ROIs 563 
for each layer. 564 

 565 

5  Discussion  566 

Generativity, a fundamental aspect of human language and cognition, has been the subject of 567 
an extensive investigation in both linguistic theory and computational modeling. Our study 568 
delved into this intricate aspect by employing deep learning models to examine the role of 569 
pretraining and task-specific performance in mimicking cognitive generativity, particularly in 570 
the context of repetition-based rules, and drawing connections to human neural data. 571 
Specifically, we explored how tasks and pretraining impact the performance of network 572 
models, drawing connections between these models and human neural data obtained through 573 
MR-constrained simultaneous MEG/EEG.  574 

Our investigation initially aimed to understand the role of pretraining in modeling generative 575 
abilities. To do this, we trained deep LSTM models both with and without pretraining, 576 
considering the premise that seven-month-old infants possess some prior knowledge about 577 
their language's syllables. The results of our pretraining analysis underscored the substantial 578 
impact of prior knowledge, as models pretrained on syllables exhibited remarkable 579 
performance improvements, demonstrating that pretraining not only improves training 580 
accuracy but also enables models to excel on novel data. This finding resonates with prior 581 
research highlighting the influence of prior knowledge in the context of generative rule 582 
learning (Seidenberg & Elman, 1999a, b; Altmann, 2002; Geiger et al., 2022; Prickett et al., 583 
2022) and offers valuable insights into the learning dynamics of neural network models. These 584 
insights can potentially be extended to the understanding of early language acquisition in 585 
infants. 586 

The subsequent examination of model performance unveiled intriguing dynamics concerning 587 
the learning trajectories of word learners and pattern learners. Without pretraining, both word 588 
learners and pattern learners faced challenges in achieving reliable performance. The 589 



consistency of their average cosine similarities throughout training indicates the difficulty 590 
these models had in generalizing repetition patterns from untrained weights. These findings 591 
emphasize the complexities of repetition-based rule learning, even for models, and shed light 592 
on the intricate nature of human generativity. Moreover, the results with pretrained weights 593 
indicated that both categories of models achieved high levels of performance  indicating the 594 
capacity to discern repetition patterns effectively.  595 

Furthermore, the application of SVMs for decoding the hidden unit activations revealed 596 
critical insights into the representations of the repetition patterns within our models. Notably, 597 
models without pretraining displayed moderate positive correlations with neural data, 598 
especially within the third layer. The alignment of neural data and model performance 599 
highlights the potential of these models to capture aspects of human cognitive processing. It 600 
also underscores the importance of considering layer-specific dynamics when interpreting 601 
model representations. However, the difference between the pattern and word learner models, 602 
especially when pretrained, stood out. The pretrained pattern learner exhibited high 603 
correlations with decoder ROIs, especially in later layers, while the pretrained word learner 604 
displayed strong correlations with the initial layers. In addition, the consistent trend of decoder 605 
ROIs showing higher correlations compared to non-decoder ROIs across all layers reinforces 606 
the model's capacity to simulate the cognitive generativity observed in human neural data.  607 

These results lead to an intriguing question: why do pretrained word and pattern learners 608 
exhibit distinct behaviors in decoding ROIs across layers? The divergence between pretrained 609 
word and pattern learners, particularly in terms of correlations between early and later layers, 610 
may be attributed to differences in their learning objectives and strategies. The word learner, 611 
focused on individual word recognition, may prioritize early layers to capture fine-grained 612 
acoustic and phonetic features critical for word identification. In contrast, the pattern learner, 613 
tasked with recognizing abstract repetition patterns, may rely on later layers to capture more 614 
complex, higher-level representations necessary for this task. Deep neural networks often 615 
exhibit hierarchical learning, with early layers capturing low-level features and later layers 616 
capturing abstract ones, leading to varying correlations with neural data. Overfitting during 617 
training and the complex nature of neural data can also contribute to the observed differences. 618 
Further research is needed to explore the specific representations in different layers and their 619 
alignment with neural processes related to word recognition and pattern learning in the human 620 
brain. 621 

In light of our findings, it is essential to recognize the limitations of our study. While we have 622 
drawn parallels between our models and human cognitive processes, these models remain 623 
simplifications of the complex neural systems of the human brain. Furthermore, our analysis 624 
was centered on a specific task related to repetition patterns. Exploring a broader range of 625 
linguistic and cognitive tasks would offer a more comprehensive understanding of the 626 
capabilities of these models. Future research could explore various aspects of generative rule 627 
learning, including the integration of multiple linguistic cues, the role of hierarchical feature 628 
representation in pretraining, and the extent to which generative models can replicate aspects 629 
of cognitive generativity. By embracing these challenges, we can continue to bridge the gap 630 
between computational models, human behavior, and the neural processes that underlie 631 
generativity in language and cognition. 632 

In conclusion, our results suggest that associative mechanisms operating over discoverable 633 
representations capturing abstract stimulus properties account for a critical example of human 634 
cognitive generativity highlighting the crucial significance of generative AI models in 635 
simulating and understanding cognitive generativity within the realms of human learning and 636 
representation.637 
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